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Artificial Intelligence (AI) encompasses the emulation of hu-
man intelligence by computers. Within AI, Machine Learn-

ing (ML) is a subset focused on training algorithms to predict 
outcomes based on experience. ML can be categorized into su-
pervised (involving outcome data) or unsupervised (without out-
come data) learning, both seeking patterns for predictions like 
cancer presence, survival rates, or risk groups. In the analysis of 
unstructured clinical data, particularly in oncology, a commonly 
employed technique is Natural Language Processing (NLP). NLP 
converts unstructured free text into a format analyzable by com-

puters, facilitating the automation of resource-intensive tasks.[1-3]

Two distinct artificial intelligence (AI) methodologies can be em-
ployed for the diagnostic imaging of malignant tumors.[4] The ini-
tial approach entails defining tumor characteristics, such as tex-
ture, volume, and shape, using mathematical equations, followed 
by quantification through computer programs.[5] The second 
method, known as deep learning, has garnered significant atten-
tion in the medical realm. Esteva et al.[6] utilized a deep convolu-
tional neural network to classify skin lesions, achieving diagnostic 
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accuracy comparable to 21 qualified dermatologists. Deep learn-
ing proves to be a robust tool for integration with imaging tech-
nologies, aiming to ease the workload of medical professionals.

AI's learning capability and reliability have been demonstrated in 
contrast to various diagnostic assays for mediastinal malignant 
tumors.[7] A proposed machine learning model, integrating posi-
tron emission tomography with computed tomographic images 
and using a multilayer perceptron classifier, successfully predict-
ed thymomas' risk levels.[8] Another study associated computed 
tomography features with pathological tumor characteristics, 
highlighting the random forest model's high efficiency in diag-
nosing thymic carcinoma and high-risk thymoma, with a predic-
tive accuracy of 94.73%.[9] An additional AI model was developed 
for predicting pathological subtypes of prevascular mediastinal 
tumors (PMTs), showing sensitivities of 52.9%, 74.2%, and 92.8% 
for identifying lymphoma, thymoma, and thymic carcinoma, re-
spectively. These instances underscore the potential of machine 
learning algorithms in conjunction with conventional imaging 
methods to significantly improve detection efficiency and accu-
racy, and alleviate diagnostic burdens.[10,11]

AI is employed in personalized treatment planning by utilizing 
predictive modeling. Through the analysis of extensive patient da-
tasets, AI algorithms can identify patterns and predict a patient's 
likely response to various treatments. Additionally, AI contributes 
to personalized treatment by conducting image analysis, where 
algorithms examine medical images such as CT or MRI scans to 
identify specific features indicative of particular conditions. This 
aids healthcare providers in earlier and more accurate diagnoses, 
ultimately leading to more effective treatment outcomes.[12]

In the realm of medical science known as radiology, which in-
volves using radiation to produce medical images like X-rays, 
CT scans, ultrasound, and MRI images for detecting deformities 
and tumors, AI algorithms play a crucial role. They can automati-
cally identify intricate anomalous patterns in image data, offer-
ing supportive diagnoses for patients. According to the American 
Department of Radiology, the adoption of AI in radiology expe-
rienced a gradual increase from zero to 30% between 2015 and 
2020, indicating a slow but consistent growth.[13]

AI Techniques and Their Advanced Tumor 
Identification

nnU-Net for Brain Tumor Segmentation

Brain tumor segmentation, a challenging task in medi-
cal imaging, is vital for accurate diagnosis and treatment 
planning. Recent advances in the BraTS challenge show a 
trend favoring deep neural networks, particularly encoder-
decoder architectures with skip connections. Architectural 
improvements like residual connections and attention 
mechanisms enhance performance. Training schemes ad-
dress challenges such as class imbalance using special-
ized loss functions like Dice loss and focal loss. Optimizing 
regions of interest, considering the partially overlapping 

whole tumor, tumor core, and enhancing tumor, improves 
segmentation. Methods specialized for brain tumor seg-
mentation led to the development of nnU-Net, a general-
purpose segmentation method. nnU-Net, with automated 
pipeline configuration, outperforms on 23 tested datasets, 
making it effective for diverse biomedical imaging. Investi-
gating nnU-Net's suitability for brain tumor segmentation, 
it serves as both a baseline algorithm and a versatile frame-
work for model development, showcasing its prowess in 
biomedical image segmentation.[14]

RAAGR2-Net: A Brain Tumor Segmentation Network 
Using Parallel Processing of Multiple Spatial Frames

RAAGR2-Net is a novel brain tumor segmentation network 
utilizing parallel processing of multiple spatial frames in 
MRI. Employing four modalities—T1, T1c, T2, and FLAIR—
offers unique tumor characteristics. While contemporary 
techniques excel regionally, simultaneous evaluation 
across all MRI regions remains a challenge. The proposed 
encoder-decoder architecture, RAAGR2-Net, addresses 
this by incorporating N4 bias field correction, z-score nor-
malization, and 0 to 1 resampling in data pre-processing. 
It introduces a Residual Spatial Pyramid Pooling (RASPP) 
module, leveraging dilated convolution for location infor-
mation retention. An Attention Gate (AG) module efficient-
ly emphasizes and restores segmented outputs. RAAGR2-
Net demonstrates efficacy on BraTS benchmarks, providing 
accurate brain tumor segmentation while overcoming the 
drawbacks of current techniques.[15]

Brain Tumor Segmentation with Deep Convolutional 
Symmetric Neural Network

Gliomas, prevalent primary brain tumors with high mortal-
ity, are commonly treated with surgery, and MRI is crucial 
for assessing and monitoring treatment success. Accurate 
segmentation from MRI is vital for clinical diagnostics, but 
the sheer volume of data necessitates efficient automatic 
segmentation. Despite numerous Deep Convolutional 
Neural Network (DCNN)-based methods enhancing im-
age feature extraction, they often overlook prior medical 
knowledge, particularly the left-right asymmetry common 
in brain tumors. To address this, we propose the Deep Con-
volutional Symmetric Neural Network (DCSNN), extending 
DCNNs with symmetric masks in various layers. Validated 
on the BRATS 2015 database, our method achieves a com-
petitive Dice Similarity Coefficient (DSC) of 0.852, with seg-
mentation taking only 10.8 seconds per case. While not the 
top performer in the BRATS 2015 challenge, our method 
outperforms recent DCNN-based approaches, uniquely 
combining symmetry prior knowledge into brain tumor 
segmentation. In summary, our novel DCSNN introduces 
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symmetry considerations to enhance brain tumor segmen-
tation using deep convolutional neural networks.[16]

Investigating Brain Tumor Segmentation and 
Detection Techniques

Early detection of brain tumors is crucial for effective treat-
ment planning. Digital image processing plays a pivotal 
role in medical image analysis, particularly in segmenting 
abnormal brain tissues from normal ones. Past research 
has proposed semi and fully automatic methods for brain 
tumor detection and segmentation, with this article focus-
ing on consolidating various segmentation techniques ex-
plored by researchers. The simplicity and degree of human 
supervision determine the clinical acceptance of a segmen-
tation technique. Brain tumors, characterized by uncontrol-
lable cell growth, pose a common and devastating problem. 
Manual detection by radiologists is prone to inaccuracies, 
necessitating automation for accurate identification. Image 
processing is vital for brain tumor segmentation, separating 
normal and abnormal tissues. This review emphasizes fu-
ture developments in medical image processing, specifically 
timely brain tumor detection for proper diagnosis. Existing 
techniques lack precision in distinguishing normal and ab-
normal segmented regions, prompting the ongoing pursuit 
of advanced automated methods for improved outcomes 
compared to current approaches.[17]

Bu-Net: Brain Tumor Segmentation Using Modified 
U-Net Architecture

Semantic segmentation of brain tumors is crucial for effec-
tive treatment, prompting recent research efforts to en-
hance neural network-based architectures. Addressing the 
challenging nature of brain tumor segmentation, this pa-
per introduces BU-Net, a 2D image segmentation method 
modifying the U-Net architecture with Residual Extended 
Skip (RES) and Wide Context (WC) blocks. These additions 
aim to diversify features, expanding the valid receptive field 
for improved segmentation performance. BU-Net's evalu-
ation on BraTS2017 Challenge datasets for tumor core, 
whole tumor, and enhancing core segmentation demon-
strated superiority over existing techniques, showcasing 
its potential contribution to bioinformatics and medical 
research.[18] Brain tumor segmentation poses challenges in 
MRI images, driving the need for AI models. BU-Net, a pro-
posed model, introduces novel encoder-decoder architec-
ture modifications—RES and WC blocks—focusing on con-
textual features. The increased valid receptive field through 
RES improves overall performance. BU-Net outperforms 
baseline U-Net and other segmentation models on BraTS 
datasets, contributing to precise brain lesion segmenta-
tion. Acknowledging the 2D U-Net's limitations in informa-

tion loss compared to 3D U-Net, future exploration aims to 
leverage 3D-based networks for enhanced segmentation 
performance.[18]

BrainSeg-Net: Brain Tumor MR Image Segmentation 
via Enhanced Encoder-Decoder Network

Efficiently segmenting MR brain tumor images is crucial for 
accurate diagnosis, driving recent advancements in neural 
network applications for improved sub-region segmenta-
tion. The complexity arises from small-scale tumor regions, 
challenging even advanced neural networks due to their 
size and varied area occupancy. The proposed BrainSeg-
Net tackles this issue by incorporating the Feature Enhanc-
er (FE) block, extracting and sharing middle-level features 
to enhance performance. Additionally, a custom-designed 
loss function addresses class imbalance. Evaluation on 
BraTS datasets reveals significant improvements in seg-
mentation for Enhancing Core (EC), Whole Tumor (WT), and 
Tumor Core (TC) compared to existing techniques.[19] MR 
brain tumor image segmentation remains complex, with 
neural network models proposed for semantic segmen-
tation showing room for improvement. BrainSeg-Net ad-
dresses the challenge of small-scale tumor segmentation 
by integrating the FE block, preserving vital location and 
spatial information. This approach enhances the effective 
receptive field, contributing to improved accuracy. Evalu-
ations on benchmark databases demonstrate BrainSeg-
Net's superior performance compared to existing state-of-
the-art techniques and baseline U-Net architecture. Plans 
involve refining this model further and exploring 3D-based 
architectures for enhanced segmentation performance, 
aiming to positively impact human lives.[19]

BrainSeg-Net: Brain Tumor MR Image Segmentation 
via Enhanced Encoder-Decoder Network

Addressing the challenge of diverse brain images, this 
study proposes an automatic brain tumor segmentation 
framework. Utilizing various MRI sequences enhances 
segmentation accuracy, particularly in areas with fuzzy 
borders. The framework optimizes a Convolutional Neural 
Network (CNN) through an Improved Chimp Optimization 
Algorithm (IChOA) for precise segmentation. The CNN's 
weight and bias values are fine-tuned, and feature selec-
tion is carried out using a Support Vector Machine (SVM) 
classifier.[19] The novel framework builds upon an enhanced 
CNN model, emphasizing hyperparameter optimization. A 
significant contribution lies in eliminating uninformative 
image parts through pre-processing, promoting data bal-
ance, and mitigating overfitting. Post-pre-processing, 17 
features are extracted from the remaining objects, enhanc-
ing the depth of the segmentation process.[19]
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Brain Tumor Segmentation Based on Optimized 
Convolutional Neural Network and Improved Chimp 
Optimization Algorithm

In the pursuit of reliable brain tumor segmentation, this 
study leverages Magnetic Resonance Imaging (MRI) se-
quences (T1, Flair, T1ce, T2, etc.) for diverse tumor identifi-
cation. Proposing an automatic segmentation framework, 
it optimizes a Convolutional Neural Network (CNN) us-
ing an Improved Chimp Optimization Algorithm (IChOA). 
IChOA adjusts CNN weights and biases, normalizes input 
images, and employs Support Vector Machine (SVM) for 
feature selection. The enhanced CNN classifies objects, 
achieving precise brain tumor segmentation. Notably, the 
framework contributes by removing uninformative image 
parts through pre-processing, fostering data balance, and 
mitigating overfitting.[20]

A Novel Framework for Brain Tumor Segmentation 
Using Neuro Trypetidae Fruit Fly-Based U-Net

The study addresses challenges in medical image process-
ing, particularly in brain images, aiming to improve disease 
forecasting precision in complex MRI scans. Introducing 
the innovative Trypetidae fruit fly-based U-Net (TFFbU) 
system with enhanced fruit fly fitness, the model achieves 
optimal outcomes. Trained on standard datasets, TFFbU 
eliminates training errors and accurately detects and seg-
ments tumors. Evaluated in MATLAB, TFFbU showcases ro-
bustness and effectiveness through metrics like accuracy, 
recall, precision, Dice, and Jaccard. In brain tumor segmen-
tation, the FFbU model enhances fruit fly fitness, resulting 
in impressive metrics, including 98.5% Jaccard, 99.1% Dice, 
99.8% accuracy, and 99.8% specificity, with a rapid 12-sec-
ond segmentation process. Compared to other models, 
FFbU exhibits increased accuracy and reduced execution 
time, hinting at the potential for superior results with the 
integration of a hybrid deep learning mechanism and a 
heuristic mechanism, including a segmentation error de-
tection mechanism.[21]

Malignant Tumor
A malignant tumor is cancerous. These tumors arise from un-
controllably growing cells (Fig. 1). If the disease's cells keep 
multiplying and spreading, it may become fatal. Malignant 
tumors have the ability to metastasize, or spread rapidly to 
other areas of the body. However, not all cancerous tumors 
grow quickly; some can grow considerably more slowly over 
time. The cancer cells that spread to other organs are indis-
tinguishable from the original cells, but they are metastasiz-
ing. For example, cancer cells from lung cancer that metasta-
size to the liver are still lung cancer cells.[22,23]

Different cell types give rise to different kinds of malignant 
tumors. Examples include:

Carcinoma
Tumors originating from epithelial cells, which are lo-
cated in the skin and the lining of organs, can manifest 
in various organs such as the stomach, prostate, pan-
creas, lung, liver, colon, and breast. These carcinomas, a 
common type of cancer, primarily arise from renal pel-
vis epithelial cells, maintaining a urothelial appearance. 
Although they usually present as solid sheets invading 
the pelvis, peripelvic tissue, and kidney parenchyma, oc-
casional squamous differentiation may occur. Carcinoma 
cells typically exhibit pleomorphic to anaplastic charac-
teristics, with numerous mitoses and the presence of ne-
crotic and hemorrhagic areas in larger carcinomas. Some 
carcinomas may display predominantly spindle-shaped 
tumor cells, resembling poorly differentiated sarcoma. 
Distinguishing invasive urothelial carcinomas from tu-
bule carcinomas is crucial.[24–28]

Sarcoma

Sarcoma, a form of cancer, impacts the body's connective 
tissues, including bones, muscles, cartilage, blood ves-
sels, and tendons. The two primary types are soft tissue 
sarcoma, prevalent in muscles or blood vessels, and bone 
sarcoma, which forms in bones (Fig. 2). Symptoms, such as 
pain and lumps, may vary depending on the type. Soft tis-
sue sarcomas affect tissues supporting or surrounding the 
body's systems, while bone sarcoma, also known as osteo-
sarcoma, specifically originates in the bone. These sarco-
mas can emerge in various tissues like fat, muscle, blood 
vessels, skin, cartilage, tendons, and ligaments.[29,30]

Rare in adults, sarcoma constitutes approximately 1% of 
adult cancers, according to the American Society of Clinical 
Oncology (ASCO). It is more prevalent in children, account-
ing for about 15% of childhood cancers. Sarcomas develop 

Figure 1. Cancer cells growth.
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in connective tissues like nerves, cartilage, bones, and fat, 
arising from cells outside the bone marrow and generally 
exhibiting malignancy.[31,32]

Germ Cell Tumor

Advancements in neuroimaging have significantly en-
hanced the precision of Germ Cell Tumor (GCT) diagnosis. 
When clinical and radiographic studies indicate the likeli-
hood of GCT, immediate serum tumor marker assessment 
is recommended. If safely feasible, a lumbar puncture for 
cerebrospinal fluid (CSF) sampling, including tumor mark-
ers and cytology, should be performed. In cases of obstruc-
tive hydrocephalus, an endoscopic third ventriculostomy 
(ETV) is advocated for ventricular exploration, simultane-
ous tumor biopsy, and CSF marker collection. Shunting is 
considered only if ETV fails, with cautious strategies like 
externalized shunt placement until completion of che-
motherapy cycles. Biopsy becomes crucial for differentiat-
ing pure germinomas, which may not express significant 
β-human chorionic gonadotropin levels, from other tumor 
types. Treatment decisions based on serum/CSF markers 
and clinical and radiographic findings, in the absence of 
histological confirmation, are increasingly accepted. The 

authors raise the prospect of future tissue requirements 
for genetic expression profiling but stress its current role 
for research purposes only. The debate over cytoreduc-
tive surgery in pure germinoma patients emphasizes the 
need for caution, as current data supports chemotherapy 
or radiation therapy as primary treatments. The authors are 
commended for navigating the complex medical literature 
to shed light on the understanding and treatment of these 
challenging tumors.[33–35]

Blastoma

Blastomas primarily affect children during fetal develop-
ment or growth. These cancers arise from precursor cells, 
undifferentiated cells capable of becoming any body cell 
type, making them more prevalent in children with higher 
precursor cell counts. Blastomas, such as hepatoblastoma, 
medulloblastoma, nephroblastoma, neuroblastoma, and 
pleuropulmonary blastoma, originate in various tissues. 
While hepatoblastoma commonly manifests in the liver, 
neuroblastoma typically begins in nerve tissue near the 
abdomen.

The causes of blastoma are believed to be genetic rather 
than environmental. Specific genetic features may predis-
pose individuals to certain blastomas, such as hepatoblas-
toma in children with Aicardi syndrome. Symptoms vary 
depending on the type but may include abdominal swell-
ing, pain, weight loss, and more. Treatment approaches, 
similar to those for adult cancers, depend on tumor size, 
with surgical removal offering a cure for small tumors.

Wilms tumor or nephroblastoma, affecting the kidneys, 
generally appears as a single tumor, with a high survival 
rate in children. Medulloblastoma, a malignant brain tumor, 
primarily forms in the cerebellum, and while treatments are 
effective, long-term side effects may occur. Neuroblastoma, 
originating in nerve tissue, is the most common cancer in 
infants under 1 year. Pleuropulmonary blastoma, found in 
the chest, particularly the lungs, is rare and typically occurs 
in children under 5 years.

Other less common blastomas include chondroblastoma, 
gonadoblastoma, hemangioblastoma, lipoblastoma, me-
dullomyoblastoma, osteoblastoma, pancreatoblastoma, 
pineoblastoma, retinoblastoma, and sialoblastoma. Glio-
mas, affecting the brain, include glioblastomas in adults. 
Diagnosis involves various tests such as blood tests, biop-
sies, scans, and radioisotope scans tailored to the individu-
al's age, symptoms, and suspected blastoma type.[36,37]

Meningiomas

Meningiomas are primary central nervous system (CNS) tu-
mors originating in the brain or spinal cord and are the most 

Figure 2. Soft tissue sarcoma develops in the body's soft tissues, 
encompassing muscles, tendons, ligaments, cartilage, fat, blood ves-
sels, lymph vessels, nerves, and the tissues surrounding joints.[30]
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prevalent type among primary brain tumors. These tumors 
are categorized into three grades based on various factors, 
including tumor characteristics, location, and genetic find-
ings. Grade 1 meningiomas are low grade, exhibiting slow 
growth, while Grade 2 atypical meningiomas are mid-grade 
with a higher likelihood of recurrence. Grade 3 anaplastic 
meningiomas are malignant and fast-growing.[38]

Diagnosis involves the removal of tumor tissue for neuro-
pathological review. Molecular testing aids in identifying 
subtypes associated with location and disease characteris-
tics. On MRI, Grade 2 and 3 meningiomas typically appear 
as enhancing masses on the brain's outer lining, which may 
or may not brighten with contrast, and can potentially in-
vade brain tissue.

The causes of atypical and anaplastic meningiomas are not 
precisely known, but genetic changes are implicated in 
cancer development. Exposure to radiation, particularly in 
childhood, is a recognized risk factor, and individuals with 
neurofibromatosis type 2 have an elevated risk. Meningio-
mas form along the dura mater, the outermost layer cover-
ing the brain and spinal cord, arising from meningeal cells 
and commonly occurring along the brain's surface.[39]

These meningiomas can spread through cerebrospinal fluid, 
with Grade 2 meningiomas potentially invading surround-
ing tissue, including nearby bone, while Grade 3 meningio-
mas, characterized by irregular cells, may invade the brain or 
spread to other organs. Symptoms vary depending on tu-
mor location and may include vision changes, loss of hearing 
or smell, confusion, seizures, and morning headaches. Over-
all, meningioma diagnosis and treatment involve a compre-
hensive understanding of the tumor's grade, subtype, and 
associated symptoms for effective management.[40]

The TNM Staging System for Tumors
The cancer staging system known as TNM (tumor-node-
metastasis) was formulated by Pierre Denoix from 1943 to 
1952. Widely embraced globally, this classification system 
is recognized as the primary method for assessing cancer 
risk and has become the universally acknowledged stan-
dard for staging in all types of solid tumors.[41]

The most popular cancer staging system is the TNM system. 
The TNM system is the primary method used by the major-
ity of hospitals and medical facilities to report cancer cases. 
Unless your type of cancer has a different staging system, 
you will probably find a description of your cancer using 
this staging system in your pathology report. Blood cancers 
and tumors in the brain and spinal cord are two examples 
of cancers with various staging systems.[42–44]

Within the TNM framework, the size and scope of the pri-
mary tumor are indicated by the T. Typically, the primary 
tumor refers to the main tumor (Fig. 3).

The number of cancerous lymph nodes in the vicinity is in-
dicated by the N.

Whether or not cancer has spread is indicated by the M. 
This indicates that the cancer has progressed to other body 
parts from the original tumor. There will be numbers fol-
lowing each letter in the TNM system description of your 
cancer that provide additional information about it, such as 
T1N0MX or T3N1M0. The meaning of the letters and num-
bers is explained below.

Primary Tumor (T)
• TX: It is impossible to measure the main tumor.

• T0: No main tumor is detected.

Figure 3. The TNM staging system for tumors.
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• T1, T2, T3, T4: Relates to the primary tumor's dimen-
sions and/or scope. The tumor's size or the extent to 
which it has spread into neighboring tissues is indicated 
by the number following the T. To give more informa-
tion, T can be further divided into T3a and T3b.[45,46]

Localized Lymph Nodes (N)
• NX: Cancer in adjacent lymph nodes is too small to quantify.
• N0: There is no cancer in the surrounding lymph nodes.
• N1, N2, N3: Describes the quantity and distribution of 

cancerous lymph nodes. The higher the number after 
the N, the more lymph nodes are affected by cancer.[47,48]

Distant Metastasis (M)
• MX: Metastasis is not quantifiable.
• M0: There is no evidence of cancer spreading to other 

parts of the body.
• M1: The cancer has progressed to other parts of the body.
Other Ways to Describe Stage: The TNM system provides 
a detailed description of cancer. However, TNM combina-
tions are categorized into five less specific stages for many 
cancers.
Current Stages:
• Stage 0: There are abnormal cells, but they haven't per-

meated the surrounding tissue. Also known as CIS, or 
carcinoma in situ. Though it may develop into cancer, 
CIS is not cancer.[49,50]

• Stage I, Stage II, and Stage III (may also be written as 
Stage 1, Stage 2, and Stage 3): There is cancer. The larger 
the cancer tumor and the more it has invaded neigh-
boring tissues, the higher the number.[51–53]

• Stage IV (may also be written as Stage 4): The cancer has 
progressed to distant regions of the body. The cancer is 
more advanced the higher the number. After the first num-
ber, letters and numbers are frequently used to provide 
more details about the cancer. For example, there are three 
subtypes of Stage 2 prostate cancer: 2A, 2B, and 2C.[50,51]

A different staging system classifies cancer into five pri-
mary categories and is applied to all forms of the disease. 
Cancer registries use this staging system more frequently 
than physicians do. However, you might still hear one of 
the following descriptions of your cancer from your physi-
cian or nurse.[54,55]

• In situ: Although abnormal cells exist, they have not 
spread to adjacent tissue.

• Localized: There is no indication that cancer has spread 
beyond its initial site.

• Regional: Cancer has spread to nearby lymph nodes, 
tissues, or organs.

• Distant: Cancer has spread to distant regions of the body.
• Unknown: Insufficient data exists to determine the stage.

Artificial Intelligence Methods in Medical 
Imaging
The surge in powerful machine learning and the increas-
ing availability of clinical data has elevated artificial intel-
ligence (AI) in medicine. Algorithms now play a vital role 
in clinical care, enhancing image reconstruction, cancer 
detection, and individual risk prediction for treatment de-
cisions. Entry into clinical care depends on technological 
feasibility, workflow integration, and immediate benefits. 
Research is advancing the integration of imaging data with 
genomics, linking large-scale observations with biologi-
cal understanding. AI's impact on imaging and precision 
medicine stems from collaborative new technology devel-
opment. Deep learning, a potent form of AI, is being inves-
tigated in various applications within medical imaging. De-
spite its promises, users must be cautious about potential 
biases and pitfalls. Grand challenges focus on advancing AI 
applications, emphasizing benchmark test sets and open-
science principles. The goal is to transition AI from compe-
tition to research benefits for improved patient care.[56,57]

Machine Learning Algorithms Based on Predefined 
Engineered Features 
Traditional artificial intelligence (AI) approaches involve 
machine learning algorithms anchored in predefined en-
gineered features. These methods heavily depend on algo-
rithms with explicit parameters derived from expert knowl-
edge. The engineered features are meticulously designed 
to measure specific radiographic traits, including the three-
dimensional tumor shape, intratumoral texture, and pixel 
intensity distribution (histogram). Following a selection 
process, only the most relevant features are utilized. Statis-
tical machine learning models, such as support vector ma-
chines and random forests, are subsequently employed to 
identify potential biomarkers extracted from imaging data.
[58] Correlation between deep learning algorithms, machine 
learning algorithms, and artificial intelligence is represent-
ed in Figure 4.

Figure 4. Artificial intelligence and its sub-divisions.[64]
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Deep Learning Algorithms

Recent progress in AI research has led to the emergence 
of novel non-deterministic deep learning algorithms. The 
fundamental techniques of deep learning have been pres-
ent for many years, but only recently has there been an 
adequate supply of data and computational power. These 
algorithms, devoid of explicit feature predefinition or se-
lection, acquire knowledge directly by traversing the data 
space, endowing them with enhanced problem-solving ca-
pabilities. While diverse deep learning architectures have 
been investigated for various tasks, convolutional neural 
networks (CNNs) currently stand out as the most prevalent 
typologies in medical imaging (Figs. 4, 5).[59–63]

Clinical Application Areas of Artificial 
Intelligence

Radiology-Based Diagnostics Cover Various Areas

Thoracic Imaging: Lung cancer, a prevalent and life-
threatening tumor, benefits from screening for pulmonary 
nodules, where early detection can be life-saving. Artificial 
intelligence (AI) plays a role in automatically identifying 
and classifying these nodules as benign or malignant.[4]

Abdominal and Pelvic Imaging: The expanding use of 
medical imaging, particularly computed tomography (CT) 
and magnetic resonance imaging (MRI), leads to more inci-
dental findings like liver lesions. AI proves valuable in char-
acterizing these lesions, distinguishing between benign and 
malignant cases, and prioritizing follow-up evaluations.[4,66]

Colonoscopy: Detection and classification of colonic pol-
yps are crucial for preventing colorectal cancer. AI-based 
tools contribute to early detection and consistent monitor-
ing, recognizing the potential risk even when polyps are 
initially benign.[67]

Mammography: Screening mammography, challenging 
for expert interpretation, benefits from AI assistance in 
identifying and characterizing microcalcifications, aiding 
in accurate analysis.[4]

Brain Imaging: AI's diagnostic predictions find application 
in brain imaging, where abnormal tissue growth may indi-
cate benign or malignant tumors, primary or metastatic.[68]

Radiation Oncology: AI automation in radiation treat-
ment planning involves tumor segmentation for dose opti-
mization. Additionally, AI assesses treatment response over 
time, enhancing the accuracy and speed of evaluating the 
success of radiation therapy.[4,69,70] In the below-mentioned 
table, the performance metrics of AI models are discussed 
(Table 1).

Non-Radiology-Based Applications 
Encompass
AI's Efficacy in Dermatology: Skin cancer diagnosis tra-
ditionally relies on visually inspecting suspicious areas by 
trained dermatologists. Given the diverse sizes, shades, and 
textures of skin lesions, interpretation is challenging. Deep 
learning algorithms, with their substantial learning capac-
ity, excel in handling this variability and detecting charac-
teristics that extend beyond human consideration.[70]

In dermatopathology, AI, particularly machine learning, is 
integral for automated analysis. Machine learning encom-
passes algorithms and instructions that enable computers 
to learn and execute tasks autonomously. These methods, 
whether supervised or unsupervised, depend on available 
data for learning. Reinforcement learning enhances data 
analysis by allowing the system to learn from both the 
environment and input data. Neural networks, especially 
deep learning and convolutional neural networks (CNN), 
are widely used. Deep learning employs multilayered neu-
ral networks for increased sensitivity and specificity. CNN, 
specifically effective in dermatopathological image analy-
sis, disintegrates images into pixels and utilizes layers like 
convolutional, pooling, and fully connected for extraction, 
classification, and accurate output. A subtype, region-
based CNN, excels in identifying specific objects within im-
ages, such as lesion locations.[72]

AI's Efficacy in Pathology: Accurate cancer diagnosis from 
biopsy samples requires quantifying digital whole-slide im-
ages, a task complicated by variations in imaging hardware, 
slide preparation, magnification, and staining techniques. 
Traditional AI methods often demand extensive tuning to 
address these challenges, whereas more robust AI excels in 
mitosis detection, histologic primitive segmentation (nu-
clei, tubules, and epithelium), event counting, and tissue 
characterization and classification.[73–75]

Figure 5. The utility of AI tools interpreting medical images has been 
demonstrated in several settings and in several diseases, including 
lung cancer.[65]
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In recent years, there has been significant growth in novel AI 
applications in pathology, presenting opportunities to en-
hance diagnostic processes, minimize errors, improve repro-
ducibility, and offer prognostic insights. Despite this progress, 
the integration of AI tools into clinical practice faces challeng-
es related to interpretability, validation, regulation, generaliz-
ability, and cost. To address these issues, a careful approach 
involving standardized usage recommendations and align-
ment with existing information systems is essential. As the de-
mand for personalized cancer care rises, AI applications could 
be effectively implemented alongside human pathologists in 
a multimodal approach that incorporates proteomics, ge-
nomics, and AI-based multiplexed biomarker quantifications. 
This comprehensive strategy aims to tailor tumor precision 
therapy for individual patients. By supporting the reporting 
system, expediting reporting time, and objectively assessing 
morpho-biological features, AI technology can contribute to 
more efficient pathology practices. Additionally, AI-aided re-
porting allows pathologists to concentrate on complex cases, 
meeting the escalating workload demands.[76]

Harnessing Sequencing Technologies for Comprehen-
sive Genomic Insights: The increasing abundance of se-
quencing data in DNA and RNA presents opportunities 
for advancing cancer diagnosis and care. AI-driven tools 

proficiently identify and extract crucial features, establish-
ing associations between somatic point mutations and 
various cancer types.[77] These tools also anticipate the re-
percussions of mutations on the sequence specificities of 
RNA-binding and DNA-binding proteins.[78] Applying Can-
cer RNA-Seq for Transcriptome Analysis proves invaluable 
in unraveling gene expression changes within tumors. 
Whether applied to coding regions or the entire cancer 
transcriptome, this sequencing method enables the detec-
tion of strand-specific information, a pivotal aspect of gene 
regulation. The inclusive nature of cancer transcriptome 
sequencing, encompassing both coding and noncoding 
RNA, provides strand orientation, offering a holistic under-
standing of expression Dynamics (Table 2).[79–83]

Conclusion
In conclusion, the early detection of tumors through artifi-
cial intelligence (AI) enhances treatment prospects. AI, par-
ticularly the subfield of deep learning (DL), has significantly 
impacted cancer management by automating feature ex-
traction and analyzing extensive medical data. Despite AI's 
rapid progress, its application in addressing malignant tu-
mors faces challenges and uncertainties, with uneven dis-
tribution across cancer types and insufficient attention to 

Table 1. Performance metrics of AI models and radiologists[71]

  Accuracy Sensitivity Specificity AUC Positive Negative F1 score 
      predictive predictive 
      rate rate

AI models
 Radiomics 0.61 0.32 0.76 0.66 0.4 0.68 0.35
 Deep learning (DL) 0.73 0.21 1 0.89 1 0.71 0.35
 Clinical 0.73 0.53 0.84 0.82 0.63 0.78 0.57
 Radiomics+DL 0.71 0.37 0.89 0.82 0.64 0.73 0.47
 Radiomics+DL +clinical 0.82 0.68 0.89 0.83 0.77 0.85 0.72
Radiologists without AI assistance
 Radiologist 1 0.63 0.58 0.65 0.61 0.46 0.75 0.51
 Radiologist 2 0.64 0.58 0.68 0.63 0.48 0.76 0.52
 Radiologist 3 0.7 0.84 0.62 0.73 0.53 0.88 0.65
    Krippendorff’s alpha 0.4757  
 Radiologist 4 0.86 0.68 0.95 0.82 0.87 0.85 0.77
 Radiologist 5 0.79 0.95 0.7 0.83 0.62 0.96 0.75
    Krippendorff’s alpha 0.4806  
Radiologists with AI assistance
 Radiologist 1 0.77 0.74 0.78 0.76 0.64 0.85 0.68
 Radiologist 2 0.8 0.89 0.76 0.83 0.65 0.93 0.76
 Radiologist 3 0.86 0.84 0.86 0.85 0.76 0.91 0.8
    Krippendorff’s alpha 0.6333  
 Radiologist 4 0.88 0.79 0.92 0.85 0.83 0.89 0.81
 Radiologist 5 0.82 0.84 0.81 0.83 0.7 0.91 0.76
   Krippendorff’s alpha 0.7331
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malignancies. Challenges persist in various fields, including 
medicine, such as a lack of standardization, technological 
immaturity, high costs, ethical controversies, and inade-
quate supervision.

It is crucial to recognize that while AI cannot be a universal 
solution for all tumors or replace human intelligence en-
tirely, its gradual application in the diagnosis, treatment, 
and prognosis assessment of malignant tumors is yielding 
notable improvements. The expectation is for an increasing 
number of AI-involved tasks in the medical field, contribut-
ing to enhanced generalization, accuracy, and stability for 
the benefit of humanity.

Future Perspectives

The future of AI in diagnosing malignant tumors holds 
promise for heightened accuracy in early detection, lever-
aging the historical evolution of medical imaging from X-
rays to advanced techniques like CT, MRI, and PET. Recent 
improvements in imaging hardware enable nuanced tissue 
distinctions, challenging for traditional AI and the human 
eye. Open-source deep learning platforms facilitate exten-
sive experimentation with raw acquisition data, address-

ing challenges of signal-noise differentiation. Overcoming 
obstacles, AI integration into healthcare is imminent, par-
ticularly in oncology, enhancing knowledge of tumors and 
refining therapy decisions. Smartphone applications with 
risk assessment tools promise immediate cancer risk esti-
mates, encouraging timely intervention and healthier be-
haviors. Algorithms aiding physicians in referrals optimize 
resource allocation in primary care, while the integration 
of ChatGPT transforms colorectal surgery by providing per-
sonalized information and predicting outcomes in neuro-
oncology. As technology advances, AI and ML secure the 
future of medical sciences, notably in cancer diagnosis and 
treatment, offering faster guidance maps and boosting 
confidence in refining traditional methods.
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Table 2. Artificial intelligence applied in different types of cancer treatment by global scientists

Authors Type of No of Patients Country/ Study Methods Results References 
  Cancer in Study  Region Population

Kuo et al. Prostate Cancer 100 Taiwan Hospital Fuzzy Neural Network Improved Interpretability [84] 
       and Forecasting
Delen et al. Breast Cancer 433272 USA SEER ANN and DT Accuracy: DT (93.6%), ANN [85]

Lu, et al. Breast Cancer 82707 USA SEER Dynamic Gradient Accuracy Improved (28%) [86] 
      Boosting Machine 
      with GA
Vasudevan et al. Glioblastoma 215 India TCGA Neural Network Accuracy: DT (89.2%) [87]

Tian et al. Bladder Cancer 115 China Hospital Statistical Analysis NEDD8: Poor Prognosis Found [88]

Hasnain et al. Bladder Cancer 3503 USA Hospital KNN, RF, etc Sensitivity& Specificity (>70%) [89]

Qian et al. Nasopharyngeal 3269 China Hospital Large Scale, Big Data m EBV DNA: a Robust [90] 
  Carcinoma    Intelligence Platform Biomarker for NPC Prognosis
Biglarian et al. Gastric Cancer 436 Iran Hospital Cox Proportional TP (83.1%) [91] 
      Hazard, ANN
Zhu et al. Gastric Cancer 289 China Hospital ANN TP: ANN (85.3%) [92]

Bottaci et al. Colorectal Cancer 334 UK Hospital Six Neural Networks Accuracy (>80%), [93] 
       mean Sensitivity (60%), 
       mean Specificity (88%) 
Bychkov et al. Colorectal Cancer 641 Finland Hospital LSTM, Naïve Bayes, Hazard Ratio (2.3);  [94] 
      SVM CI (95%,1.79–3.03), AUC (0.69)
Chang et al. Oral Cancer 156 Malaysia MOCDTB Hybrid model of 
      ReliefF-GA-ANFIS Accuracy (93.81%), AUC (0.9) [95]

Lynch et al. Lung Cancer 10442 USA SEER GBM, SVM RMSE (32,15.05) for GBM, SVM [96]

Sepehri et al. Lung Cancer 101 France Hospital SVM with RFE and RF Accuracy (71%, 59%) [97]

Lu et al. Ovarian Cancer 364 UK Hospital Unsupervised RPV: A Novel Prognostic [98] 
      Hierarchical Clustering Signature Discovered
Acharya et al. Ovarian Cancer 469 Singapore & TCGA Improved SVM Accuracy (81.8%), ROC(0.922) [99] 
    Malaysia
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